Right-angled Artin groups and Out(Fn) I: quasi-isometric embeddings

نویسنده

  • Samuel J. Taylor
چکیده

We construct quasi-isometric embeddings from right-angled Artin groups into the outer automorphism group of a free group. These homomorphisms are modeled on the homomorphisms into the mapping class group constructed by Clay, Leininger, and Mangahas in [CLM12]. Toward this goal, we develop tools in the free group setting that mirror those for surface groups and discuss various analogs of subsurface projection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-trees and right-angled Artin subgroups of braid groups

We prove that an arbitrary right-angled Artin group G admits a quasi-isometric group embedding into a right-angled Artin group defined by the opposite graph of a tree. Consequently, G admits quasi-isometric group embeddings into a pure braid group and into the area-preserving diffeomorphism groups of the 2–disk and the 2–sphere, answering questions due to Crisp–Wiest and M. Kapovich. Another co...

متن کامل

Quasi-isometrically Embedded Subgroups of Braid and Diffeomorphism Groups

We show that a large class of right-angled Artin groups (in particular, those with planar complementary defining graph) can be embedded quasi-isometrically in pure braid groups and in the group Diff(D2, ∂D2, vol) of area preserving diffeomorphisms of the disk fixing the boundary (with respect to the L2-norm metric); this extends results of Benaim and Gambaudo who gave quasi-isometric embeddings...

متن کامل

1 4 A ug 2 00 7 THE ASYMPTOTIC GEOMETRY OF RIGHT - ANGLED ARTIN GROUPS , I

We study atomic right-angled Artin groups – those whose defining graph has no cycles of length ≤ 4, and no separating vertices, separating edges, or separating vertex stars. We show that these groups are not quasi-isometrically rigid, but that an intermediate form of rigidity does hold. We deduce from this that two atomic groups are quasi-isometric iff they are isomorphic.

متن کامل

Quasi-isometric Classification of Some High Dimensional Right-angled Artin Groups

In this note we give the quasi-isometry classification for a class of right angled Artin groups. In particular, we obtain the first such classification for a class of Artin groups with dimension larger than 2; our families exist in every dimension.

متن کامل

1 4 A ug 2 00 7 THE ASYMPTOTIC GEOMETRY OF RIGHT - ANGLED ARTIN GROUPS

We study atomic right-angled Artin groups – those whose defining graph has no cycles of length ≤ 4, and no separating vertices, separating edges, or separating vertex stars. We show that these groups are not quasi-isometrically rigid, but that an intermediate form of rigidity does hold. We deduce from this that two atomic groups are quasi-isometric iff they are isomorphic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015